A ONE-DIMENSIONAL WAVE EQUATION WITH NONLINEAR DAMPING

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical Exponent for a Nonlinear Wave Equation with Damping

It is well known that if the damping is missing, the critical exponent for the nonlinear wave equation gu=|u| p is the positive root p0(n) of the equation (n&1) p&(n+1) p&2=0, where n 2 is the space dimension (for p0(1)= , see Sideris [14]). The proof of this fact, known as Strauss' conjecture [17], took more than 20 years of effort, beginning with Glassey doi:10.1006 jdeq.2000.3933, available ...

متن کامل

Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms

Here a; b¿0 and p¿1, m¿1. In case of IBVP, in a bounded domain ⊂Rn with Dirichlet boundary conditions, the following results are known: 1. When a=0, it is proved (see [1, 3, 8, 14, 16]) that the solution blows up in nite time for su ciently large initial data. 2. When b=0; Haraux and Zuazua [5] and Kopackova [7] prove the global existence result for large initial data. The behavior of the solut...

متن کامل

Periodic Solutions to Nonlinear One Dimensional Wave Equation with X -dependent Coefficients

This paper deals with t-periodicity and regularity of solutions to the one dimensional nonlinear wave equation with x-dependent coefficients

متن کامل

Nonlinear Beam Equation with Indefinite Damping

We consider the nonlinear beam equation utt + a(x)ut − f(ux)x + uxxxx = 0 in a bounded interval (0, 1) ⊂ R. The equation has an indefinite damping term, i.e., with a damping function a = a(x) possibly changing sign. For this non-dissipative situation we prove the exponential stability of the corresponding linearized system provided ā = ∫ 1 0 a(x)dx > 0 and ‖ a− ā ‖L2≤ τ , for τ small enough. We...

متن کامل

Regularity and Scattering for the Wave Equation with a Critical Nonlinear Damping

We show that the nonlinear wave equation u + ut = 0 is globally well-posed in radially symmetric Sobolev spaces Hk rad(R 3) × Hk−1 rad (R 3) for all integers k > 2. This partially extends the well-posedness in Hk(R3) × Hk−1(R3) for all k ∈ [1, 2], established by Lions and Strauss [12]. As a consequence we obtain the global existence of C∞ solutions with radial C∞ 0 data. The regularity problem ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Glasgow Mathematical Journal

سال: 2006

ISSN: 0017-0895,1469-509X

DOI: 10.1017/s0017089506003156